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Abstract—An emerging solution to privacy issues in smart
grids is battery-based load hiding (BLH) that uses a rechargeable
battery to decouple the meter readings from user activities. How-
ever, existing BLH algorithms have two significant limitations:
(1) Most of them focus on flattening high-frequency variation
of usage profile only, thereby still revealing a low-frequency
shape; (2) Otherwise, they assume to know a statistical model
of usage pattern. To overcome these limitations, we propose a
new BLH algorithm, named RL-BLH. The RL-BLH hides both
low-frequency and high-frequency usage patterns by shaping the
meter readings to rectangular pulses. The RL-BLH learns a
decision policy for choosing pulse magnitudes on the fly without
prior knowledge of usage pattern. The decision policy is designed
to charge and discharge the battery in the optimal way to
maximize cost savings. We also provide heuristics to shorten
learning time and improve cost savings.

I. INTRODUCTION

With smart meters that report fine-grained profiles of
energy usage, utility providers can conduct sophisticated power
grid management like demand prediction and time-of-use
pricing. However, this also threatens user privacy, since ad-
versaries may learn a lot about user’s behavior pattern, e.g.,
when you wake up, and when you go out and come back,
from hundreds of data points of meter readings even in a
day. With nonintrusive appliance load monitoring (NALM)
techniques [1], fine-grained meter readings can also be used
to analyze what type of appliance is being in use, by detecting
load signatures. This can be used for industrial espionage for
example. All of these attacks rely on a man-in-the-middle
between the smart meter and the (usually trusted) utility. Such
man-in-the-middle attacks are discouragingly easy to mount,
especially with embedded devices, due to the weakness of the
cryptographic mechanisms and the weakness of the passwords
or keys in use [2], [3]. Because of this privacy concern, there
are several ongoing lawsuits to stop installing smart meters
[4], which delays wide and quick deployment of smart grids.

There have been many efforts to address smart meter’s
privacy issue in the literature, but the most promising line
of work has been on battery-based load hiding (BLH) [5]–
[11]. The BLH decouples the meter readings from actual usage
profile by charging and discharging a battery at the premises
of the end consumer in a strategic manner. The design of
how to control the battery is at the heart of a BLH system.
The most common approach is to make the meter readings
remain as constant as possible, thereby flattening the high-
frequency components of usage profile [5]–[7]. This method
is effective in hiding load signatures, but does not change

much the shape of the envelop of usage profile, i.e., the low-
frequency components that provide a clue for user’s sleep
patterns or times of vacancy. To get an intuitive feel for the
high-frequency pattern and low-frequency pattern, consider the
case of an industrial manufacturing facility where there are
several high load instruments with distinctive energy usage
profiles. These patterns can be monitored as part of a high-
frequency pattern, and, as has been shown before [8], the
appliance in use can be identified through analysis of the
signature patterns. On the other hand, the long-term, relatively
stable patterns in a household or industrial setting, such as the
number of employees in each industrial shift or the occupancy
level of a shelter, will show up in low-frequency components.
We argue, as have many others in academic [9] and practical
(legal) settings [12], that it is important to provide privacy
protection for both these kinds of usage patterns.

Another common approach to hiding the smart meter infor-
mation is to model the contol of meter reading as a function of
the usage value by the discrete-state Markov decision process
(MDP), assuming that the energy usage are quantized to a finite
number of discrete values [9]–[11]. This category of methods
can in theory deal with low-frequency usage pattern as well
together with high-frequency pattern, since they are trying to
decorrelate the meter readings and the usage profile at every
possible time instance. However, in practice they raise critical
issues. First, they require to know the probability distribution
of usage profile, which takes a long time to learn accurately
in practice. Second, the quantization assumption leads to a
trafeoff between performance and complexity. To get better
performance, they need fine-granular quantization, but this
directly increases the size of state space because the state space
size is typically proportional to O(LN), where L is the number
of quantization levels in usage and N is the number of time
instances. Huge state space involves heavy computation, which
is not acceptable in a small embedded device used to control
the battery in BLH systems. Indeed, for this reason, the work
in [9] considered only four-level quantization, which is quite
coarse.

In addition to improving privacy, an important motivation
for using a battery is the potential cost savings. Note that
smart grid systems change electricity price depending on time.
Such a pricing policy is called time-of-use (TOU) pricing. Cost
savings will be accomplished by charging the battery when the
price is low and using the saved energy from the battery when
the price is high. However, privacy protection and cost savings
are not always compatible with each other, and thus only a few
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works have attempted to achieve these two goals at the same
time, with their own limitation. For example, [7] has focused
on flattening high frequency components of usage profile in a
cost effective way, still revealing low-frequency shape. Another
work [9] needs to solve the optimal battery control policy for
each pricing zone separately, and thus it is difficult to deal
with a complex pricing policy of many zones, or of a price
rate that changes dynamically at every moment.

In this paper, we address the aforementioned limitations
of existing BLH systems, proposing a new battery control
algorithm, named RL-BLH, that takes energy expenditure into
account as well as user privacy. The RL-BLH shapes the meter
readings to rectangular pulses to hide the high-frequency usage
pattern. The pulse magnitudes are mainly determined by not
the usage but the amount of energy remaining in a battery,
thereby significantly reducing correlation between the meter
readings and usage patterns in the low-frequency shape. The
decision policy for choosing a pulse magnitude also considers
at the same time the goal of maximizing savings in the energy
cost by charging the battery when the price of power is low
and using the stored energy in the battery when the price of
power is high. This is an important consideration because the
price of power varies during the day, and the variation tends to
be increasing due to the higher penetration of renewable, and
fluctuating, energy sources [13]. Consider two forms of TOU
pricing in use at American utilities. The first is called real-time
pricing (RTP) in which electricity rates vary frequently over the
course of the day. Rates change over very short intervals, such
as an hour, and the customer receives a unique price signal
for each interval, reflecting the costs of generating electricity
during that time. In New York, large commercial customers
face mandatory hourly pricing while two Illinois utilities have
begun to implement RTP for residential customers. The second
form is time-zone-based TOU which is the more common of
the two. This TOU pricing breaks up the day into two or three
large intervals and charges a different price for each. Rates can
be divided into off-peak prices (generally during the middle
of the night to early morning), semi-peak prices (daytime and
evening), and peak prices (occurring during periods of highest
demand, usually afternoon/early evening); these rates remain
fixed day-to-day over the season. The difference between the
off-peak and peak prices can be significant, e.g., it is 25% for
Pacific Gas & Electric, the largest utility in California.

Although the above decision policy of when to charge or
discharge the battery can be formulated as an MDP, it suffers
the issues of requiring usage distribution information and high
computational complexity. Thus, the key novelty of our work is
that the decision policy is learned on the fly by a reinforcement
learning technique.1 As a result, it does not require prior
knowledge of usage statistics. Further, it can efficiently deal
with continuous state spaces.

Our contributions in this paper can be summarized as
follows:

1) Privacy protection: We hide both the low-frequency and
high-frequency components of usage profile by shaping
the meter readings to rectangular pulses. Specifically, the
flattened meter readings within the pulse width remove

1This is why we named our algorithm RL-BLH: the ‘RL’ stands for
reinforcement learning.

high frequency variation of usage profile. At the same
time, the magnitude of the pulses is designed to vary
depending on the battery level, without being directly
related with usage profile. Thus, we also reduce the
correlation between the meter readings and usage profile
in the low-frequency shape. To the best of our knowledge,
this work is the first that can hide both high- and low-
frequency components without quantizing energy usage.

2) Learning-based battery control for cost savings: We
learn the decision policy on the fly to determine the
optimal magnitude of the rectangular pulses for given
battery level and a time index by a reinforcement learning
technique, called Q-learning, without assuming to know
the usage pattern. The reinforcement learning approach
makes RL-BLH resilient to changes in user behavioral
pattern since RL-BLH keeps updating the optimal deci-
sion for a state in the run-time. In contrast, prior works
[9]–[11] have to recompile the whole decision table after
building a new stochastic model for the changed behav-
ioral pattern, which takes a long time and requires heavy
computations. The resulting decision policy of RL-BLH
achieves the optimal cost savings, thereby providing an
economic incentive for adopting a battery that is otherwise
used only for privacy protection.

3) Practical considerations for reducing computing cost:
Since the battery level is a continuous variable, the
number of possible states for which control decisions
need to be learned could be infinite. We address this
issue by approximating the optimal action-value function
(defined in Section III-B) with a linear combination of a
few features that are represented as a function of state
variables. Thanks to this, computational complexity is
significantly reduced. Further, in order to overcome the
long learning time of reinforcement learning, we propose
two heuristic methods: generating synthetic data in the
run-time and reuse of data in early phases. The former
increases the effective amount of data and the latter
utilizes the given data better, thereby reducing the learning
time significantly and improving the cost savings as well.

Experimental results show that the RL-BLH is comparable
to a high-frequency flattening BLH scheme in hiding load
signatures, and outperforms it in hiding the low-frequency
shape of usage profile. RL-BLH can achieve over 15% of
savings in daily energy expenditure with a 5kWh battery, and
the savings grow when the battery capacity increases (see
Figures 5 and 9). We can also see from an experiment that
our heuristics play a significant role in expediting learning. As
a result, RL-BLH with our heuristics finishes learning within
10 days in the situation that takes about 1500 days otherwise
(see Figure 6).

The rest of this paper is organized as follows. We introduce
our system model in Section II and high-level design objectives
in Section III. The reinforcement learning framework to maxi-
mize the cost savings is presented in Section IV and the heuris-
tics to reduce the learning time are given in Section V. We
summarize the proposed algorithm in Section VI. In Section
VII, we evaluate the performance of the proposed algorithm in
various angles. We discuss some relevant miscellaneous issues
in Section VIII. We briefly review related work in Section IX.
The paper is concluded in Section X with some possible future
work.

520



II. SYSTEM MODEL

We consider a smart meter that measures the energy con-
sumption once in every fixed interval (e.g., one minute), which
we call a measurement interval. Suppose that a day consists
of nM measurement intervals. We denote by xn the amount
of energy consumed by appliances in the n-th measurement
interval, where n = 1, 2, . . . , nM . We call xn an usage profile.
Denote the amount of energy that we draw from the power grid
in the n-th measurement interval by yn, which we refer to as a
meter reading. The smart meter measures the value of yn and
reports it to a utility company. Without any special protection
mechanism, the meter reading must be the same as the usage
profile, i.e., yn = xn for all n.

In order to decouple these usage profile and meter reading,
we put a rechargeable battery at the user-end as shown in
Figure 1, and select the value of yn without considering what
the value of xn will be. The battery plays as a buffer between
xn and yn. Namely, we charge the battery by yn, and the
amount of energy required by appliances, xn is provided by
the battery instead of the power grid. Note that yn is a control
variable, and xn is determined by user behaviors.

Assume xn and yn are continuous variables such that
0 ≤ xn ≤ xM and 0 ≤ yn ≤ xM , i.e., the usage profile is
bounded above by xM and the meter reading is designed (by
RL-BLH) to be so as well. Battery level bn denotes the amount
of energy remaining in a battery at the beginning of the n-th
measurement interval. Assuming for simplicity that there is no
loss when charging and discharging the battery2, we have

bn = bn−1 + yn−1 − xn−1. (1)

We assume that the capacity of the battery is bM , i.e.,

0 ≤ bn ≤ bM for all n. (2)

A. How to Achieve Cost Savings

We consider time-of-use (TOU) pricing where the elec-
tricity price varies from time to time. We denote by rn the
price rate per unit amount of energy in the n-th measurement
interval. Cost savings can be achieved by charging the battery
when the rate is low and by using the energy stored in the
battery when the rate is high.

To better understand the strategy to achieve cost savings,
consider a simple example case where there are two price
zones: one is a low-price zone (rn = rL) and the other is
a high-price zone (rn = rH ), where rH > rL. In this case,
if we charge b amount of energy in the low-price zone and
use it in the high price zone, we will save (rH − rL)b. Thus,
the maximum possible cost savings per day is (rH − rL)bM ,
which is obtained when we charge the battery from empty to
full in the low-price zone and use the battery until empty in
the high-price zone. Figure 2 illustrates a notional plot of the
variation in the charge level of the battery given the above
consideration, where a day is assumed to be divided into two
equally sized low-price and high-price zones. In other words,
the optimal strategy should result in the battery level that is
managed to become full at the end of the low-price zone, and
be discharged to empty at the end of the high-price zone.

2This assumption can be easily relaxed by multiplying loss coefficients to
xn−1 and yn−1 in (1).

In general, the cost savings can be obtained when the
original cost for what a user consumes (i.e.,

∑nM

n=1 rnxn) is
larger than the bill that the user pays to a utility company (i.e.,∑nM

n=1 rnyn). Namely, the cost savings of a day, denoted by
S, can be expressed as

S =

nM∑
n=1

rn(xn − yn). (3)

In the earlier example of two price zones, the cost savings is
written as

S = rH
∑

n∈high-price zone

(xn − yn)− rL
∑

n∈low-price zone

(yn − xn).

(4)

Note here that
∑

n∈high-price zone(xn − yn) is the amount of
energy that we use from the battery in the high-price zone,
and

∑
n∈low-price zone(yn − xn) is the amount of energy that

we charge to the battery in the low-price zone. If those two
quantities are equal to bM , we can achieve the maximum cost
savings, which is (rH − rL)bM as mentioned before.

Although we mainly discussed an example of two price
zones here, RL-BLH is not limited to such a pricing policy.
Rather, RL-BLH is designed to handle the case where rn is
chaining for each and every n (see Section III-B).

III. KEY DESIGN OBJECTIVES OF RL-BLH

Figure 3 shows a typical example of the usage profile.
It has been well known that adversaries can identify what
appliance is being used by detecting signatures in the usage
profile with nonintrusive appliance load monitoring (NALM)
techniques [1], [6]. In addition, the low-frequency shape of the
usage profile can be used to deduce user’s behavioral patterns
like when a user goes to bed or when the user goes out for
work [9], [12]. Thus, our first design goal is to protect user
privacy by hiding both the high and low frequencies usage
patterns. Towards this end, we shape the meter readings to
rectangular pulses of varying magnitude. The second goal of
our design is to maximize the expected savings of a day,
i.e., E(S) so that in addition to privacy protection, customers
can benefit from our design economically as well. For this,
the rectangular pulse magnitudes are controlled in a way that
the battery is charged at the price rate rn, and the energy
stored in the battery is used at the rate rn′ , where rn′ > rn.
The following subsections describe our design consideration
in more detail.

A. Privacy protection

Prior work in [9] based on a discrete-state MDP approach
has indicated that changing the value of yn in every mea-
surement interval may cause significant correlation between
the usage profile and the meter reading, especially between
xn−1 and yn. This is because the choice of yn is inherently
constrained by bn to satisfy the condition in (2), and the battery
level bn, in turn, depends on xn−1 from (1). For instance,
when bn = bM , yn should be zero to avoid overflow in the
battery, since xn can be zero. Thus, the adversaries may be
able to exploit this dependence to detect xn−1 from yn and
yn−1, with figuring out when the battery is fully charged, i.e,
knowing the values of bn−1 and bn.
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Fig. 1: System model. In the n-th measurement interval, xn and yn denotes, respectively, the amount of energy consumed by
appliances and the amount of energy that we draw from the power grid. The xn is supplied by a battery, and the battery is
charged by yn. With the battery acting as a buffer, the value of xn can be different from the value of yn.

ba
tt
er
y
le
ve
lb
n

measurement interval n

bM

nM

low price zone high price zone

Fig. 2: A typical profile of battery level for a day to achieve
the optimal cost savings when there are two price zones. The
battery should be fully charged in the low-price zone, and the
stored energy in the battery should be fully used in the high-
price zone.

Our control algorithm below alleviates this problem by
changing the value of yn only once every nD measurement
intervals. This makes the meter readings look like rectangular
pulses whose width is nD measurement intervals. The pulse
width, i.e, nD for which the value yn is held constant is re-
ferred to as a decision interval. Like flattening high-frequency
variation in [5]–[7], keeping yn constant over nD measurement
intervals reduces the correlation between yn and xn around the
n-th measurement interval .

We denote by ak the magnitude of a pulse for the k-th
decision interval, which corresponds to measurement intervals
n = (k − 1)nD + 1 to n = knD. By design, the value of ak
is allowed to be one out of aM different choices as follows:

ak = (a− 1)xM/(aM − 1) for a = 1, 2, . . . , aM , (5)

that is, ak is one out of evenly spaced aM different real

low-frequency

high-frequency

Fig. 3: An example of usage profile. Behavioral patterns can
be deduced from the low-frequency components and load sig-
natures can be detected from the high-frequency components.

numbers over an interval [0, xM ]. We will still decide the
pulse magnitude ak based on the current battery level Bk =
b(k−1)nD+1. However, since

Bk = Bk−1 +

(k−1)nD∑
n=(k−2)nD+1

(ak−1 − xn), (6)

we now have more sources of randomness involved
in determining the value of Bk, i.e., Bk−1 and
xn for n = (k − 2)nD + 1, . . . , (k − 1)nD. Thus, from
adversary’s point of view, it is much harder to know how
ak−1 is selected.

The value of yn staying constant as yn = ak for the k-
th decision interval is effectively similar to flattening high-
frequency variation in the meter readings, which was attempted
by several existing BLH algorithms. However, our approach
can also hide the low-frequency variation in the meter readings
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as well, since the choice of ak varies depending mainly on the
battery level Bk, not the shape of the usage profile, i.e., ak
is decided without considering the values of xn for the k-
th decision interval. In other words, the pulse magnitude ak
changes in such a way that it is not directly correlated with
the shape of the usage profile. Thus, correlation in the low-
frequency shape between the meter readings and usage patterns
is significantly reduced.

B. Cost savings

We call deciding the value of a in (5), consequently ak,
an action. A decision policy π defines what action should be
taken for each k = 1, 2, . . . , kM , where kM = nM/nD with
an assumption that nM is a multiple of nD. Denoting the cost
savings for the chosen a in the k-th decision interval by

Sk(a) =

knD∑
n=(k−1)nD+1

rn(xn − a), (7)

the maximum cost savings of a day is achieved by finding the
optimal policy π∗ expressed as

π∗ = argmax
π

E

(
kM∑
k=1

Sk(a)

)
. (8)

Note that Sk(a) should be negative at some moments so that
the battery can be charged, and Sk(a) should be positive at the
other moments so that the energy in the battery can be used.
To achieve the optimal cost savings, we need to well choose
the value of a at each moment so that the overall sum of Sk(a)
over a day can be positive and maximized.

In the meantime, after the value of a is chosen, the
change in the battery level for the k-th decision interval is∑knD

n=(k−1)nD+1(a − xn), which can range from −xMnD to
xMnD. Therefore, when the battery level is too high or too
low, an arbitrary choice of action may violate the battery
level constraint in (2) for a corresponding decision interval.
For this reason, we restrict a = 1 (i.e., ak = 0) when
Bk > bM − xMnD, thereby guaranteeing that the battery
does not overflow, regardless of the values of xn for the
k-th decision interval. Similarly, if Bk < xMnD, we set
a = aM (i.e., ak = xM ), which prevents energy shortage.
When xMnD ≤ Bk ≤ bM − xMnD, any action among aM
possible options can be taken to maximize the cost savings.

The optimal policy π∗ can be best described by the fol-
lowing recursive equations, called the Bellman equations [14]:

Q∗(k,Bk, a) =

∫ xMnD

−xMnD

Pk(z) (Sk(a) + V ∗(k + 1, Bk + z)) dz,

(9)

where

V ∗(k,Bk) =

{
maxa Q

∗(k,Bk, a) if 1 ≤ k ≤ kM ,
0 if k = kM + 1,

(10)

and Pk(z) is the probability that the change in bat-
tery level for the k-th decision interval is z, i.e.,∑knD

n=(k−1)nD+1(a− xn) = z. We call Q∗(·) the optimal

action-value function and V ∗(·) the optimal value function.
The optimal value function V ∗(k,Bk) describes the optimal

TABLE I: Selected features fi(k,Bk) for approximating Q(·).
Here, K = k/kM and B = Bk/bM .

i 0 1 2 3 4 5

fi(k,Bk) 1 K B KB K2 B2

cost savings that can be achieved at the state (k,Bk) assuming
the following actions are all optimal until the end of a day. The
optimal action-value function Q∗(k,Bk, a) describes that the
optimal cost savings that result from the choice of a at the
given state (k,Bk) is the sum of E (Sk(a)) and the optimal
cost savings that can be achieved from the next state followed.
Therefore, the maximum cost savings of a day starting at
the battery level B1 can be expressed as V ∗(1, B1), and the
optimal action at a state (k,Bk) defined by π∗, which we
denote by π∗(k,Bk), can be written as

π∗(k,Bk) = argmax
a

Q∗(k,Bk, a). (11)

While the above MDP formulation is quite standard, it suffers
the two issues that we discussed earlier, i.e., it requires usage
distribution information, and fine-granular quantization of the
energy usage that leads to a huge state space and high compu-
tational complexity. Below, we will introduce a reinforcement
learning approach that effectively addresses these two practical
issues.

IV. REINFORCEMENT LEARNING TO MAXIMIZE COST

SAVINGS

Since we do not assume to know the probability distribution
of xn and consequently Pk(z) in (9), direct computation of
Q∗(k,Bk, a) is impossible. Therefore, we will try to learn it
by a sample mean Q(k,Bk, a) (precisely speaking, a running
average across days) in the following way:

Q(k,Bk, a)←(1− α)Q(k,Bk, a)

+ α
(
Sk(a) + max

a′
Q(k + 1, Bk+1, a

′)
)
,

(12)

where α is called a learning rate. By the law of large numbers,
Q(k,Bk, a) can converge to Q∗(k,Bk, a) after days for a
sufficiently small value of α [15], [16]. Such learning is
referred to as the Q-learning in the reinforcement learning
literature.

Note in (12) that Bk is a continuous real variable, and
thus explicitly representing Q(·) for each possible (k,Bk, a)
is infeasible, i.e., the number of the states to learn is infinite.
For this reason, we approximate Q(·) with a function estimator

Q̂(·) that is a linear combination of representative features [15],
[17]. By experiments3, we have found that Q(·) can be well
approximated by the following form:

Q̂(k,Bk, a) =
5∑

i=0

w
(a)
i fi(k,Bk), (13)

3Given a state (k,Bk), we have tried all the possible linear combinations of
up to second-order terms for k/kM and Bk/bM , and picked the combination
that results in the maximum cost savings.
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where w
(a)
i for i = 0, 1, . . . , 5 are weights to find for each a,

and the features fi(k,Bk) are selected as shown in Table I.

That is, for each action a, we represent Q̂(·) using six features
that are combinations of the normalized battery level, Bk/bM
and the normalized decision interval index, k/kM . Now what

we need learn is the weights w
(a)
i for each a, instead of the

value of Q(k,Bk, a) for each possible tuple of (k,Bk, a).

On the other hand, if we rewrite (12) as

Q(k,Bk, a)← Q(k,Bk, a) + αΔQ
(a)
k , (14)

where

ΔQ
(a)
k = Sk(a) + max

a′
Q(k + 1, Bk+1, a

′)−Q(k,Bk, a),

(15)

we see that the Q(·) update rule in (12) is to move to

convergence by reducing the magnitude of ΔQ
(a)
k . It has been

shown in [17] that applying the same underlying idea as in
updating Q(·), a linear estimator in the form of (13) can be
found by solving the following:

min
w

(a)
i ,∀i

E

(
ΔQ̂

(a)
k

)2
, (16)

where

ΔQ̂
(a)
k = Sk(a) + max

a′
Q̂(k + 1, Bk+1, a

′)− Q̂(k,Bk, a).

(17)

That is, Q̂(k,Bk, a) converges to its optimal by minimizing

the magnitude of ΔQ̂
(a)
k .

Using the stochastic gradient descent, the weights w
(a)
i

that are the solution to (16) can be learned by the following
iterations:

w
(a)
i ← w

(a)
i + αΔQ̂

(a)
k fi(k,Bk), ∀i. (18)

Once the learning is complete, the optimal action in (11) can
be re-defined as

π∗(k,Bk) = argmax
a

Q̂∗(k,Bk, a). (19)

V. MEANS TO EXPEDITE LEARNING

Since our solution approach is intended to find the optimal
policy π∗ by online learning, how fast we can learn is one
of the important aspects to take into account for practicality.
Since Q̂(·) is a linear function, one may try a closed-form
formula approach like the least square policy iteration (LSPI)
[18], instead of the iterative update in (18). However, we have
found that the LSPI does not work well in our case, because it
produces a matrix, which can be singular with a high chance.4

For this reason, rather than the LSPI, we come up with two
kinds of heuristic methods to boost up the speed of learning,
each of which will be explained in the following subsections.

4In our case, the LSPI requires to compute the difference in features between
two consecutive states (k,Bk) and (k+1, Bk+1), which is the same or can
be very similar across k. This characteristic reduces the LSPI to an under-
determined system of linear equations, and thus leads to poor performance.

A. Generating synthetic data on the fly

In the past decade, supervised learning communities have
observed that the performance of a classifier can be signifi-
cantly improved by generating synthetic data and thus increas-
ing the size of a training data set [19]. Inspired by such an idea,
we try to use synthetic data in the context of accelerating the
speed of learning. In reinforcement learning, convergence to
the optimal policy takes time, which is exactly proportional
to the time to collect the enough number of training samples
(i.e., xn in our case). Therefore, we can reduce the wall-clock
time to convergence by feeding artificially generated data.

The synthetic training data can be generated in many
different ways, e.g., through shifting xn a little in the time
domain, or picking a random number based on the statistics
for xn. In this paper, we take a statistical approach. For each
measurement interval n, we track the sample distribution of xn.
Every dG days, we generate tG days of artificial usage profiles
where xn is randomly sampled according to the statistical
characteristic of the n-th measurement interval. Thus, every
dG days, we apply such synthetic usage profiles to additionally
train our Q̂(·) function following (18).

Our experiments shows that the synthetic usage profiles
can play an important role in reducing the convergence time
with the parameter dG well chosen to make the synthetic
data statistically close to real data in early days. Considering
computation load, we limit the use of generating synthetic data
within the first dMG days.

B. Reuse of data

From (17) and (18), we can see that for the very early phase

of learning, the weights w
(a)
i (and, in turn, the approximator

Q̂(·)) are not much different from the initial values, which
are arbitrarily given. Although this is an inherent nature of Q-
learning, we thought that the data xn within Sk(a) is not fully
utilized, because if the initial weights were more meaningful,
we could use the data xn in a more effective way.

In this sense, we try to reuse the usage profile sequence by
training our system multiple times using the same data. That
way we can fully utilize each and every data sample even in
the early phase of learning. Specifically, until the first dR days,
we store the usage profile sequence of a day, and re-train the
system tR times using the sequence of the day. We can see
from experiment results that the reuse of data helps reduce the
learning time significantly.

VI. SUMMARY OF RL-BLH

The aforementioned pieces of our ideas are summarized in
Algorithm 1. The INNER LOOP of Algorithm 1 corresponds
to the core procedure that determines how to choose the pulse
magnitude ak, i.e., the meter reading yn for the k-th decision
interval and how to learn the optimal policy π∗ that maximizes
the cost savings. Note in lines 5-10 that we use the ε-greedy
strategy to handle the ‘explore vs. exploit’ dilemma: instead
of the best action at the current moment, we explore the other
available options every once in a while [15]. The OUTER LOOP

of Algorithm 1 describes the iteration of the INNER LOOP over
days. In line 23, the REUSE mode means that we use the usage
profile that is pre-collected at the day (refer to Section V-B).
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Algorithm 1 RL-BLH

1: Set w
(a)
i = 0, ∀i

2: // INNER LOOP describes the loop over measurement
intervals within a day.

3: procedure INNER LOOP

4: for each k = 1, 2, . . . , kM do
5: Choose a number u randomly over [0, 1].
6: if u < ε then
7: Choose a randomly among the possible at (k,Bk) .

8: else
9: a = argmaxa′ Q̂(k,Bk, a

′).
10: end if
11: for each n = (k − 1)nD + 1, . . . , knD do
12: Set yn = (a− 1)xM/(aM − 1).
13: end for
14: Update w

(a)
i , ∀i by (18).

15: end for
16: end procedure
17: // OUTER LOOP describes the loop over days.
18: procedure OUTER LOOP

19: for each day d do
20: Execute the INNER LOOP

21: if d <= dR then
22: for v = 1, 2, . . . , tR do
23: Execute the INNER LOOP in REUSE mode
24: end for
25: end if
26: if d is a multiple of dG and d ≤ dMG then
27: for v = 1, 2, . . . , tG do
28: Execute the INNER LOOP in SYN mode
29: end for
30: end if
31: end for
32: end procedure

The SYN mode in line 28 implies that the usage profile is
synthetically generated according to our description in Section
V-A.

VII. EXPERIMENTS

A. Metrics and experiment environment

The load signature can be detected by observing the high-
frequency variation of the usage profile, especially by watching
two successive values [1], [6]. Thus, we have to measure
how well we can hinder the adversary from guessing the
length-two sequence of the usage profile Xn = (xn, xn+1)
by observing the same length sequence of the meter reading
Yn = (yn, yn+1). As other prior works [6], [9]–[11], we
quantify this metric using normalized mutual information (MI)
(on average) defined as follows:

MI =
1

nM − 1

nM−1∑
n=1

H(Xn)−H(Xn|Yn)

H(Xn)
. (20)

Here, H(X ) = −∑i P (X = i) log2 P (X = i) denotes the
uncertainty of X in bits. If H(Xn) is z bits, it can be roughly
understood in such a way that Xn has 2z possible realizations,
each of which has an equal probability 1/2z . Thus, the MI
quantifies how much uncertainty about Xn is reduced by

observing Yn on average, normalized to the uncertainty of Xn.
The smaller MI means the fewer clue about Xn leaked from
Yn. For example, MI= 0 implies that Yn gives no clue about
Xn at all.

The low-frequency shape of the usage profile can tell the
adversary that someone is staying home or active, thereby
resulting in a high average in usage for hours and vice versa.
In order to measure how well we hide such a low frequency
shape, we consider the Pearson correlation coefficient (CC)
between xn and yn defined as

CC =

∑nM

n=1(xn − x̄)
∑nM

n=1(yn − ȳ)√∑nM

n=1(xn − x̄)2
√∑nM

n=1(yn − ȳ)2
(21)

where x̄ and ȳ are the sample means of xn and yn over a day,
respectively. The CC is a measure of the linear dependence
between xn and yn. If xn and yn are changing in the same
direction, e.g., yn jumps up when xn does so, we will have a
large value of CC. Thus, the higher value of CC is, the more
similar the low-frequency shapes of the usage profile and the
meter reading are.

Lastly, as a metric of cost savings, we consider saving ratio
(SR) defined as

SR = E

(∑nM

n=1 rn(xn − yn)∑nM

n=1 rnxn

)
. (22)

The SR quantifies the expected ratio of the cost savings to the
original cost for what the user actually consumes for a day.

We evaluate RL-BLH using the UMassTraceRepository
HomeC model [20], i.e., the usage profile is generated fol-
lowing the statistics of real measurements for the UMassTrac-
eRepository data. The measurement interval is set to one-
minute, thereby resulting in nM = 1440. The value of xM

is 0.08 kWh. According to SRP residential time-of-use price
plan [21], the electricity rate is set as rn = 21.09 cent per kWh
for n > 1020, and rn = 7.04 cent per kWh for n ≤ 1020. With
this pricing policy, the UMassTraceRepository model results in
the electricity bill that is about 1.65 dollars a day or 50 dollars
per month.

We set the hyper-parameters of RL-BLH as aM = 8, dG =
10, dMG = 50, tG = 500, dR = 20, tR = 100, α = 0.05, and
ε = 0.1. The values of α and ε are decreased by a factor of
1/
√
d across days, where d means the number of days.

B. Comparison with an existing scheme

In order to show RL-BLH’s ability that hides the low-
frequency shape of usage profile, we first compare RL-BLH
with a representative high-frequency flattening algorithm in
[5], which we refer to as a ‘low-pass’ scheme in this paper.

Figure 4 shows a typical usage profile and meter readings,
and corresponding battery level changes. In RL-BLH, the
meter readings give almost no idea of what the low-frequency
shape of the usage profile looks like. Rectangular pulses
of varying magnitude show up aperiodically to charge and
discharge the battery as the trend illustrated in Figure 2. In
contrast, the low-pass scheme shows a clear correlation in
the low-frequency shape between the usage profile and the
meter reading. The adversary may figure out that by looking
at the bumps in the meter reading around 480 ≤ n ≤ 600 and
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Fig. 4: Typical examples of the RL-BLH and a low-pass
schemes for real measurement data when nD = 10 and
bM = 3 kWh. The electricity rate here is set as rn = 21.09
cent per kWh for n > 1020, and rn = 7.04 cent per kWh
for n ≤ 1020. (4a) The envelope of yn gives almost no
idea of what the envelop of xn looks like. As intended for
cost savings, RL-BLH charges the battery when rn is low
(n ≤ 1020) and lets the energy in the battery be used when
rn is high (n > 1020). (4b) There is a clear correlation in the
envelop between xn and yn. The adversary may figure out that
some activities are happening inside the house by looking at
the bumps in the meter reading around 480 ≤ n ≤ 600 and
1180 ≤ n ≤ 1300.

1180 ≤ n ≤ 1300, some activities are happening inside the
house. This kind of information can also be used to figure out
when the house is left empty and when users come back home.
We can see from Figure 5a that RL-BLH is indeed better in
hiding the low-frequency shape than the low-pass scheme by
an order of magnitude in the CC.

Figure 5b shows that the MI of RL-BLH is slightly higher
than that of the low-pass scheme. However, note that at worst,
the MI is less than about 0.015, i.e., observing Yn reduces the
uncertainty of Xn by less than 1.5% in RL-BLH, which can
be said almost trivial.
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Fig. 5: Comparison to a low-pass scheme when nD = 10. (5a)
RL-BLH is better in hiding the low frequency components
than the low-pass scheme by an order of magnitude in the
CC. (5b) RL-BLH is comparable to the low-pass scheme in
hiding high frequency components. (5c) RL-BLH provides
cost savings that increases along with the battery capacity,
while the low-pass scheme achieves a random cost savings,
which can go negative.

As shown in Figure 4a, RL-BLH charges the battery when
the price is low (n ≤ 1020) and discharges it when the price is
high (n > 1020), thereby resulting in the cost savings. From
Figure 5c, we can see that the RL-BLH can achieve more
cost savings by increasing the battery capacity. At bM = 5
(kWh), the SR of RL-BLH is about 15%, which corresponds
to 0.25 dollars of cost savings a day or 7.5 dollars a month.
As we discussed in Section II-A, the maximum possible cost
savings in a day can be expressed as (rH−rL)bM , which is 0.7
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Fig. 6: Effect of all heuristics when nD = 15 and bM = 5
kWh. With our all heuristics, convergence time can be reduced
from 1500 days to 10 days.

dollars in our experiment environment with bM = 5 (kWh).
Therefore, what we achieve, although it is optimal for a given
situation, is less by 0.45 dollars than the theoretical limit. This
is because we are losing the opportunity to achieve additional
savings at the cost of privacy protection, i.e., not changing the
value of yn for a decision interval. We will see from Figure
8a that the SR increases when we decrease the length of the
decision interval, thereby improving the controllability of a
battery level. Meanwhile, it is natural that the cost savings
is arbitrary with the low-pass scheme, and it can easily go
negative, since there is no consideration for savings in the
low-pass scheme.

C. Effects of the heuristics

We now show how helpful the heuristics introduced in
Section V are to expedite the learning and to improve the cost
savings.

To decide the convergence time of RL-BLH, we define the

error as the sum of ΔQ̂
(a)
k in (17) over a day, i.e.,

error =

kM∑
k=1

ΔQ̂
(a)
k , (23)
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Fig. 7: Effect of each heuristic when nD = 15 and bM = 5
kWh. Although convergence time and saving ratio can be im-
proved significantly by each heuristic alone, they are improved
most when all heuristics are used together at the same time.

where a is what is chosen for the k-th decision interval by our
policy. We can say that the algorithm is converged when the
error starts to saturate below.

We can see from Figure 6 that without the heuristics, the
convergence takes about 1500 days, which is not practical at
all. Meanwhile, applying our heuristics, the algorithm con-
verges within 10 days. Figure 7 shows that the reuse heuristic
only can reduce the convergence time to within 10 days, but
the SR becomes the largest when all heuristics are used. Thus,
we can think that our heuristics are effective in reducing the
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Fig. 8: Privacy and cost savings according to nD when bM = 5
kWh. (8a) When the decision interval nD increases, the
battery level becomes less controllable, and thus cost savings
is reduced. (8b) High frequency components can be hidden
better with a large value of nD, while hiding low frequency
components is not much affected by nD.

convergence time as well as improving the cost savings aspect.

D. Effects of the decision interval.

Figure 8 shows how RL-BLH acts when the the decision
interval nD varies. We can see from the figure that the SR
goes down when nD increases, since the larger nD means the
fewer chances to drive the battery level in the direction that
we want, i.e, a large value of nD leads to low controllability.
The MI also moves in the reverse direction with nD. This
is because the larger nD is more favorable to hide the high-
frequency variation, as the low-pass scheme is slightly better
than RL-BLH in Figure 5b. On the other hand, the CC does
not seem to change significantly according to nD. Thus, we
can conclude that the decision interval nD plays a role as a
knob to control the tradeoff between privacy protection and
cost savings in RL-BLH.

E. Effects of the battery capacity.

Figure 9 shows the performance metric variation according
to the battery capacity bM . The cost savings is proportional to
the amount energy that is charged at the low price and used at
the high price. Thus, the SR increases when bM goes up, as
we can imagine. We have observed that for a larger bM , RL-
BLH gets more chances to choose ak = xM , the maximum
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Fig. 9: Privacy and cost savings according to bM when
nD = 15. (9a) Cost savings increases along with bM . (9b)
Low frequency components can be hidden better with a large
value of bM , while hiding high frequency components is not
much affected by bM .

possible value, when decided to charge. We suspect that this
is because the algorithm tries to charge more energy in the
battery to achieve the maximal cost savings, and thus causes
ak to have a less correlation with the usage profile. For this
reason, the CC shows the inverse relationship with bM . In
the meantime, the MI does not show any linear relationship
with bM . Since the variation is trivial in scale, we think the
values are in error range of experiments. Therefore, we can
conclude that the larger value of battery capacity bM is more
favorable to RL-BLH for both privacy protection and cost
savings. Considering that the battery price is proportional to
its capacity, users may decide an appropriate capacity of the
battery that meets their requirement for privacy protection and
cost savings.

VIII. DISCUSSION

Comparison to [9]: As we mentioned in the Introduction,
Markov decision process (MDP) based BLH schemes can also
hide both the high-frequency and low-frequency components
of usage profile simultaneously. One of such methods [9] can
even achieve cost savings as well. Thus, RL-BLH and [9]
have similar objectives, i.e., both privacy protection and cost
savings. However, [9] used a dynamic programming approach
to control a battery under the assumption that the energy usage
is quantized to discrete values. Its computation complexity and
memory requirement for state space increase quickly along
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with the number of quantization levels and the number of
time instances. Indeed, [9] stated that the number of state
space entries is proportional to O(LN) in a basic version
and O(L2N + LN2) in an advanced version, where L is
the number of quantization levels in usage and N is the
number of time instances. In our experimental environment,
this corresponds to about 16680960 state entries with L = 8
for the advanced version, although L = 8 only represents a
coarse quantization. For each state entry, [9] calculates the
optimal decision. In contrast, what RL-BLH needs to learn

is the weights w
(a)
i for i = 0, 1, . . . , 5 and a = 1, 2, . . . , aM .

In the same environmental setup, RL-BLH has to deal with
only 40 unknowns (with aM = 8), even if it does not need
quantization. Thus, RL-BLH can be said to have a huge
advantage against [9] in both computation complexity and
memory requirement.

Another benefit of RL-BLH is that it can handle the
change in user behavioral pattern smoothly, since it keeps
updating the weights at every time instance. On the other hand,
[9] needs to re-calculate the whole decision table after re-
learning the new probability model for usage pattern. In view
of the computational complexity in [9], such update would be
difficult to be executed at the consumer end, since the BLH
controller is expected to be a small embedded system.

Usage patterns changing: The decisions will become
sub-optimal if the underlying data differs from future data.
However, this issue is common for all MDP approaches due
to the inherent difficulty in obtaining the true underlying
distribution based on limited data. RL-BLH keeps updating
the weights as new data becomes available to alleviate this
issue, and hence can be useful even if the user behavioral
pattern changes.

Unusual low usage: If there is a day when energy usage is
unusually low and deviating from a daily pattern, e.g., no ones
are home, the cost savings could go negative in that day. This
is because the charged energy at the battery is not fully used at
the high-price periods. However, in such a case, the following
day can use the energy saved at the battery without charging
it again, thereby resulting in higher cost savings than that of
a typical day. The SR that we have shown in experiments is
an average over days, taking such a case into account.

Battery cost: In our experimental environment, we have
shown that a battery of 5kWh can achieve 7.5 dollars of cost
savings from 50 dollars bill per month. One may argue that
this is relatively small compared to the battery cost. Indeed, the
initial cost for the battery ranges from $150 to $200 per kWh
currently (although GM expects its battery cell cost hitting
$100 per kWh in 2022) [22]. However, note that our first
objective is to protect user privacy. What we are doing is to
exploit the battery that is anyhow required for privacy pro-
tection, and to provide an economical benefit simultaneously
in order to encourage privacy-conscious customers to buy our
solution. This would be similar to hybrid car’s marketing point:
environment-conscious consumers buy a hybrid car and save
some fuel-cost, although it requires a considerable initial cost
due to the battery.

IX. RELATED WORK

There has been extensive research to address the privacy
issue in smart grids. One common approach was to modify
the meter readings directly in such a way that the gathered
data contains some level of uncertainty for sensitive infor-
mation about individuals. Distortion [23], obfuscation [24],
anonymization [25], and aggregation [26] fall into this category
of methods. However, modifying the meter readings could lead
to inaccurate billing and uncertainty in grid controls (e.g.,
demand prediction). In addition, this approach requires the
existing smart meters to be replaced, which may not be a viable
option to utility providers and customers.

Recently, the main stream of research to address the
privacy problem has been the battery-based load hiding (BLH)
approach. The idea of the BLH is to employ a rechargeable
battery at user-ends and feed appliances from the battery so
that the meter readings are less correlated with the actual
usage. Kalogridis et. al. [5] pioneered such a method. They
used a battery to flatten high-frequency variation of the load
profile in a best-effort manner. Similar ideas were proposed
in [6] and [7] where privacy leakage was studied in a more
quantitative way. Zhao et. al. [8] devises a BLH method that
adds a noise to usage profile to assure differential privacy. This
group of approaches is effective in hiding load signatures that
indicate which appliance is being used. However, there was
no consideration for the low-frequency components of usage
profile, thereby still revealing important user privacy like sleep
patterns or times of vacancy.

Hiding the low-frequency profile of usage as well has been
attempted in [9]–[11] in effect. In those works, the real usage
is assumed to be quantized to a finite number of discrete levels.
The problem is then formulated as a Markov decision process
by which meter reading is chosen to be different from the
real usage using a battery in a way of minimizing the privacy
leakage defined in terms of mutual information. This approach
assumes that the underlying state transition model is known,
which is unrealistic in most cases, and fails to work when the
model changes. In addition, the size of a decision table grows
fast according to the granularity of quantization, thus requiring
heavy computation that makes such algorithms not suitable to
run in small embedded systems.

The rechargeable battery that plays a key role in the
BLH provides us with an opportunity to lower the energy
bill, by exploiting the time-of-use (TOU) pricing feature of
smart grids. This implies that the battery can be charged
when the cost of energy is low and discharged to feed the
appliances when the cost of energy is high. However, only
a few works have considered this aspect in conjunction with
privacy protection [7], [9] and they have their own limitations.
For example, [7] fails to hide the low-frequency usage pattern,
and [9] is difficult to deal with a complex pricing policy in
addition to requiring a probability distribution model for the
usage profile.

Our work also uses a rechargeable battery to hide the usage
profile, but we address all the shortcomings of the previous
approaches. First of all, we take the low-frequency usage
pattern into account as well as the high-frequency one. Second,
we do not assume to know the underlying statistical model of
usage profile. Third, the value of energy use is not assumed
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to be discrete (i.e., no quantization). Fourth, we provide an
energy cost saving framework along with privacy protection.
The proposed algorithm learns a decision policy to achieve
cost savings on the fly and effectively handle fine-granular
TOU pricing with reinforcement learning. Lastly, we provide
heuristic methods that reduce the learning time significantly.

X. CONCLUSION

This paper has studied a new battery-based load hiding
(BLH) algorithm that not only addresses the limitations of
existing solutions, but also achieves the optimal savings in
the energy cost. The proposed BLH algorithm, named RL-
BLH, hides both the low-frequency and high-frequency usage
patterns by shaping the meter readings to rectangular pulses
of varying magnitude. Energy expenditure is reduced in the
optimal way that charge a battery when the energy price is
low and uses the stored energy in the battery when the price
is high. A reinforcement learning technique is applied to learn
the decision policy that controls the battery level, without
requiring a priori knowledge of usage profile. We approximate
the optimal action-value function by a linear combination of
a few selected features so that real usage value can be taken
into account without quantization, and computation complexity
is significantly reduced. The learning time of RL-BLH is
significantly shortened by generating synthetic data on the fly
and reusing original data at the beginning of learning.

For future work, we are interested in extending our work by
integrating renewable energy sources into the picture, where
we may produce profit by selling energy in the battery, not
just saving the energy cost. Another interesting direction is to
further reduce the convergence time of reinforcement learning
by enhancing the way of generating synthetic data in the run-
time.
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